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Outline

Background and motivation for new modeling methods.
Modeling reaction kinetics using the law of mass action.

Stoichiometric constraints-based optimization approaches.

Two examples, one hypothetical and one real physical example.
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Scaling-Up to Systems Biology
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Classical Methods of Analysis

Unlike classical mechanics in physics, this field does not have the luxury of a
long history of research because attempts to develop a general basis for a
mathematical description of living organisms have only been made in recent
decades.
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The Law of Mass Action
For a system involving M reactions and N chemical species with ;" reaction

. . kj
i X1+ Xo+ - —|—1/NXN = /<;1X1—|—/<;;X2—|— —I—h:NXN,
K

the law of mass action gives
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Detailed Balance

When in equilibrium, the forward and reverse fluxes are equal

J 7 . ,,bj <) o)
N _ 1.0 1 2 N
k+x1 $2 AN =k’ z;'z, TN
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Open, Living Systems
Starting with the original mass-action kinetics

dxz I/j I/j Vj . K,] K,J I<.:j
J 1,72 N J 1 P N
E I{—V Q. 2 R S Al A S JNAD B

the detailed balance conditions can be broken by incorporating external input
and output fluxes
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Michaelis—Menten Enzyme Kinetics

For enzyme-catalyzed reactions, represented as
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Michaelis—Menten Enzyme Kinetics

For enzyme-catalyzed reactions, represented as

S+E:1‘SE—>E—I—P,
k-

we can make the guasi-steady-state assumption that
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Reversible Michaelis—Menten Enzyme Kinetics

For
e k3
S+ E=SE=FE+ P,
k1 k2

we get
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Nonequilibrium Thermodynamics
The chemical potential of a species is given by

i = p; + RT In x;,

from which we get the reaction potential, given by
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Limitations of Classical Methods

Typically, the biochemical networks of interest are very large and complex.
As a result, it is extremely difficult to solve for analytic solutions of the
models.
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Limitations of Classical Methods

Typically, the biochemical networks of interest are very large and complex.

As a result, it is extremely difficult to solve for analytic solutions of the
models.

Experimentalists are limited in the amount of information they can gather
and, in most cases, it is not possible to obtain detailed kinetic-rate
information. Therefore, methods that avoid having to know this information
are needed.
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Stoichiometric Constraints-Based Approaches

Genome-scale constraints-based models have been developed to describe
the functional states, or phenotypes, of many organisms (Westerhoff and
Palsson, 2004).
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Stoichiometric Constraints-Based Approaches

Genome-scale constraints-based models have been developed to describe
the functional states, or phenotypes, of many organisms (Westerhoff and
Palsson, 2004).

Stoichiometric Network Theory (SNT) uses the static, algebraic structure of
biochemical networks, within which chemical “motion” must take place.

This method of anlysis has been successfully applied to systems such as
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Stoichiometric Network Theory

Returning to the general mass-action equation for a system of N species and
M reactions

(1) T BT 0, SO QT . S,
(K] — o) Y xo? . xy — K xylas? .. xp) :

g=1

we can rewrite the system of equations in matrix form as
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Flux Balance Analysis

In NESS, the concentrations of the chemical species are not changing and we
have

SJ = —Jet,

which is known as the flux balance constraint of FBA. Note that this constraint
Is similar to Kirchoff’s current law of electrical circuit theory.
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Energy Balance Analysis

Define p as the N-dimensional vector of chemical potentials, then the
M-dimensional vector of reaction potentials, A, is given by

STu = Ap.

We can define the nullspace matrix K € RM>*(M=N=7) with columns that form
a basis for the nullspace of S, so that SK = 0. Then we have the constraint

TT T
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Energy Balance Analysis

If we define the nonnegative forward and reverse reaction fluxes so that
J=J, — J_, then the reaction potential is

which leads us directly to the second law of thermodynamics, i.e.,
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The Optimization Problem

' 3.3, 3. J A
J7J+a’]rfli]rémt7Ap' f( - Ill)
S.t. SJ+J" =0

K'Ap =0
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Sequential Quadratic Programming

We can solve the problem for any given, smooth, linear or nonlinear,
objective function using a Sequential Quadratic Programming (SQP)
algorithm.

The basic idea of an SQP method is to step toward an optimal solution by
iteratively approximating the problem by quadratic subproblems.

A simple interpretation of an SQP algorithm is to view it as an application of
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The Quadratic Subproblem

Linearizing at the current iterate x;, we get the subproblem

1
mpin §pTHkp + Vfgp

st. Ve p+elxi)=0, ic{l1,2,...,m}

Veixp)'p+ci(xz) 20, ie{m+1,...,n},




BIOINFORMATICS S.G. 19

A Hypothetical Example

Consider: The stoichiometric matrix is:
A+2B=2C -1 2 -1 -19
s_[-2 2 -1 1 -1
C+D=2A+2B =11 -1 0 -1 o0
A+ B=2D 0O -1 2 3 1

A+C = B+3D

—\
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A Hypothetical Example

Using FBA alone to maximize D outpult:

Case 1 Case 2
rxn | J || species | J° rxn J || species | J¢
1 | O A 1 1 0.05 A 10
2 | 0 B 0 2 | 10.09 B 20
3 |1 C 0 3 | 20.17 C 20
4 |0 D -1 4 9.96 D -90
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A Hypothetical Example

Using FBA and EBA to maximize D output and minimize total energy:

oo [ 3 [ 3. | I | A | J° | species
1| 095| 1363 1456 0067 10| A
2 | 835 5604 4769|0161 20| B
3 [ 1694 |11385| 9691|0161 20| C

4 [1070| 8522 7452|0134 90| D
5 | 32.36 | 143.66 | 111.30 | -0.255 || hdr = 13.83
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Using FBA, EBA, and heat constraint to maximize D and minimize total
energy:

A Hypothetical Example

rxn J J. J_ Ap J¢ | species
1 0.00 | 6.04 | 6.04 | 0.00 | 10 A
2 |10.44 | 1287 | 243 | -1.67 | 20 B
3 | 2133|2212 |0.79 | -3.33 | 20 C
4 9.56 | 11.78 | 2.23 | -1.67 || -90 D

22
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Saccharomyces cerevisiae

Overall, the net reaction of fermentation is the convertion of glucose to ethanol
and carbon dioxide

C6H1206 — 2C2H5OH == 2C02

Under anaerobic conditions, most of the energy from the sugar is
transferred to ethanol and growth of the yeast cells is minimized.

Temperature is an important environmental factor for yeast because above
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Saccharomyces cerevisiae

Glc AT
NAD
cell membrane GAPDH
transport NADH
Gle,, 1,3-BPG

ATP ADP
HK PGK
ADP ATP

Glycogen<7ﬁ‘> Go6P aﬁ Trehalose 3PGA

ATP ADP ;
R GM

F6P 2PGA
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Assume we measure reaction fluxes in units of umol - min—

Saccharomyces cerevisiae

1

- mg protein—

1

and reaction potentials in units of J - mol™*. Furthermore, assume that the
temperature of the system is 30°C.

Experimental values are available for some reaction fluxes:

rxn | transport | HK PGl | PFK | ALD | TPI | GAPDH
Vinaz 0.36 084 | 1.26 | 0.68 | 1.19 | 84 4.4

25




BIOINFORMATICS S.G.

26

unbranched branched
FBA FBA, EBA, & heat FBA FBA, EBA, & heat

rxn J J J. J_ Ap J J J. J_ A
transport || 0.33 | 0.33 | 1.02 | 0.69 | -971 0.36 | 0.36 | 0.75 | 0.39 | -1659
HK 0.33 1033|102 | 0.69 | -971 0.36 | 0.36 | 0.75 | 0.39 | -1658
PGI 0.33 1 033 | 1.02 | 0.69 | -971 0.30 | 0.30 | 0.70 | 0.40 | -1420
PFK 0.33 1033|102 | 0.69 | -971 0.30 | 0.30 | 0.70 | 0.40 | -1422
ALD 0.33 1 033 | 1.02 | 0.69 | -971 0.30 | 0.30 | 0.70 | 0.40 | -1420
TPI 0.33 | 0.33 | 1.02 | 0.69 | -971 0.23 | 0.23 | 0.64 | 0.41 | -1126
GAPDH 0.65 | 0.65 | 1.21 | 0.56 | -1943 || 0.54 | 0.53 | 0.87 | 0.34 | -2379
PGK 0.65 | 0.65 | 1.21 | 0.56 | -1943 || 0.54 | 0.53 | 0.87 | 0.34 | -2379
PGM 0.65 | 0.65 | 1.21 | 0.56 | -1943 || 0.54 | 0.53 | 0.87 | 0.34 | -2380
ENO 0.65 | 0.65 | 1.21 | 0.56 | -1943 || 0.54 | 0.53 | 0.87 | 0.34 | -2378
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Discussion

By combining FBA and EBA constraints, we are certain that the feasible
solutions are mass balanced and thermodynamically realistic.

Using an SQP to solve the optimization problem allows us to combine the
FBA and EBA constraints and consider many different objective functions.

This method allows us to study a system on the whole genome scale and
do in silico experiments instead of in vitro or in vivo experiments.
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